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ABSTRACT: Azaboradibenzo[6]helicene, a new semi-
conductor material possessing helical chirality, has been
synthesized via a tandem bora-Friedel−Crafts-type reac-
tion. Unprecedented carrier inversion between the race-
mate (displaying p-type semiconductivity) and the single
enantiomer (displaying n-type semiconductivity) was
observed and can be explained by changes in the molecular
packing induced by helical homochirality.

Helicenes, nonplanar screw-shaped polycyclic aromatic
compounds consisting of ortho-fused aromatic rings,

have attracted considerable attention because of their inherent
chirality.1 Recently, the self-assembly of helicenes via unique
π−π stacking interactions in solution as well as in crystals has
been studied extensively, since these aggregates display
intriguing properties such as liquid crystallinity,2 nonlinear
optical susceptibility,3 and circularly polarized luminescence.4

To date, however, the electrical properties of these aggregates
(e.g., charge mobility) have not been investigated well,5 even
though the π−π stacking interactions are expected to facilitate
charge transport. Herein we report the synthesis of
azaboradibenzo[6]helicene (A) via a tandem bora-Friedel−
Crafts-type reaction.6 Charge mobility measurements based on
the time-of-flight (TOF) method suggested that the racemate
and single enantiomer of A are p- and n-type semiconductors,
respectively. This unprecedented carrier inversion can be
explained by changes in the packing structure of the respective
hetero- and homochiral crystals of A, as revealed by calculation
of the electronic coupling.7

Scheme 1 summarizes the synthesis of A. 1-Bromo-2-
phenylnaphthalene (1), prepared in two steps from commer-
cially available 1-bromonaphthalen-2-ol,8 was coupled with
lithium amide in the presence of tris(dibenzylideneacetone)-
dipalladium(0) [Pd2(dba)3] and 2-dicyclohexylphosphino-2′,6′-
dimethoxybiphenyl (SPhos) to give diarylamine 2 in 74% yield.
Borylation of 2 by treatment with BuLi and BCl3 and the
subsequent tandem bora-Friedel−Crafts-type reaction with
AlCl3 and 2,2,6,6-tetramethylpiperidine afforded the racemate
of A (rac-A) in 68% yield.
The helical structure of rac-A was determined to be C2-

symmetric by X-ray crystallography (Figure 1a). The B−N
bond length [1.448(3) Å] is similar to that in typical B−N
aromatics (1.45−1.47 Å), indicating its strong π interactions.9

Furthermore, the lengths of the B−C1(C1′) and N−C2(C2′)

bonds are 1.5527(19) and 1.425(2), respectively, indicating
that they are single bonds. These observations, together with
the highly distorted BNC4 ring structure [B−N−C4(C4′)−
C3(C3′) dihedral angle = 21.66°] reveal the low aromaticity of
the BNC4 rings, which is consistent with the relatively small
nucleus-independent chemical shift [NICS(1)] value of −1.8
(Figure 1b).10,11 In contrast, the surrounding C6 rings are
nearly planar and show large NICS(1) values. Notably,
molecular orbital (MO) calculations10 indicated that the π
conjugation is spread over the entire molecule despite the large
distortion induced by the BNC4 rings (Figure 1c).
The unique packing structure of the heterochiral crystal is

shown in Figure 1d,e. The molecules are stacked in a head-to-
tail array with CH−π distances of 2.9−3.3 Å. Each array is
formed from a single enantiomer, resulting in alternating right-
handed (P-helical, shown in blue) and left-handed (M-helical,
shown in pink) configurations that are arranged in a face-to-face
fashion (π−π distance = 3.4−3.6 Å), while the local dipole
moments of the B−N bonds cancel each other.
Optical resolution of rac-A into enantiopure (P)-A and (M)-

A was carried out by chiral HPLC on a DAICEL CHIRALPAK
IA-3 column (eluent: n-hexane/CH2Cl2).

12 The absolute
configuration of enantiopure A in each fraction was determined
by X-ray crystallographic analysis of the dibromo derivative of
(P)-A,13 while the structure of enantiopure (P)-A was
determined by X-ray crystallography (Figure 2). The molecular
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structure of (P)-A in the homochiral crystal (Figure 2a) is C2-
symmetric, and the bond lengths and angles are almost identical
to those found in the heterochiral crystal (Figure 1a). On the
other hand, the packing structure of the homochiral crystal
differs significantly from that of the heterochiral crystal, as a
one-dimensional columnar alignment along the c axis was
observed (Figure 2b).14 Interestingly, the molecules in
neighboring columns are arranged parallel to each other and
show a rotation of 120° with each layer (Figure 2c). As a result,
the local dipole moments, which run perpendicular to the c axis,
are offset every third layer.
Since the enantiopurity of (P)-A did not decrease upon

heating (not even at 275 °C),15 we prepared films of rac-A and
(P)-A with thicknesses of 8.2 and 6.7 μm, respectively, by
vacuum deposition at 5.0 × 10−3 Pa for use in TOF
measurements.8 The carrier-transport properties of the films

were then evaluated at room temperature using electric fields of
5.0 × 105 and 5.2 × 105 V cm−1, respectively. It was found that
rac-A showed high hole mobility (μh = 4.6 × 10−4 cm2 V−1

s−1),16 but no transient photocurrent was detected in electron
mobility measurements (Table 1). Interestingly, the enantio-

pure (P)-A did show higher electron mobility (μe = 4.5 × 10−3

cm2 V−1 s−1) than hole mobility (μh = 7.9 × 10−4 cm2 V−1

s−1).16 Since the corresponding physical properties of the
vacuum-deposited films, such as ionization potential (IP) and
electron affinity (EA),17 were almost identical, we speculated
that the carrier inversion could be caused by the distinct
orientation of (P)-A in the homochiral film.
To gain deeper insight into the carrier-transport properties,

the electronic couplings V between neighboring molecules in
different stacks were calculated18 from the X-ray crystal
structures of rac-A and (P)-A (Figure 3). In the heterochiral
crystal of rac-A (Figure 3a), the P and M enantiomers are
arranged in a tightly offset, face-to-face stacking array. The
maximum coupling between the HOMOs of neighboring
molecules (42.0 meV) was 6 times that of the corresponding
LUMOs (7.2 meV). In contrast, in the homochiral crystal of
(P)-A (Figure 3b), the maximum coupling of the HOMOs
(30.1 meV) was only two-fifths that of the LUMOs (73.2
meV). These results are in good agreement with the carrier

Figure 1. (a) ORTEP drawing and (d, e) packing structure of rac-A
obtained by X-ray crystal analysis. Thermal ellipsoids are shown at
50% probability. H atoms have been omitted for clarity. The P
enantiomer is shown in blue and the M enantiomer in pink. (b)
NICS(1) values and (c) the Kohn−Sham highest-occupied MO
(HOMO) and lowest unoccupied MO (LUMO) of (P)-A.

Figure 2. (a) ORTEP drawing and (b, c) packing structure of (P)-A.
Thermal ellipsoids are shown at 30% probability. H atoms have been
omitted for clarity.

Table 1. Electronic Properties of Amorphous Films of rac-A
and (P)-A

aHole mobility (cm2 V−1 s−1). bElectron mobility (cm2 V−1 s−1).
cIonization potential (eV). dElectron affinity (eV). eTransient
photocurrent was not detected.
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mobilities determined by the TOF method,18 suggesting the
possibility that the molecular orientations in the amorphous
films might be similar to those in the crystals.19

In summary, we have synthesized azaboradibenzo[6]helicene
(A) via a tandem bora-Friedel−Crafts-type reaction. Charge
mobility measurements by the time-of-flight (TOF) method
suggested that the racemate and single enantiomer of A are
good p- and n-type semiconductors, respectively. This
unprecedented carrier inversion can be explained by differences
in the packing structures of the hetero- and homochiral crystals
of A, as revealed by electronic coupling calculations. The results
indicate the potential of these chiral organic semiconductors in
electronic applications such as bipolar junction transistors and
morphology-controlled bulk-heterojunction solar cells.
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